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Bayesian linear regression

In a maximum likelihood approach for setting parameters in a linear model for
regression, we tune effective model complexity, the number of basis functions

◮ We control it based on the size of the data set

Adding a regularisation term to the log likelihood function means that the
effective model complexity can be controlled by the regularisation coefficient

◮ The choice of the number and form of the basis functions is still
important in determining the overall behaviour of the model

This leaves the issue of setting appropriate model complexity for the problem

◮ It cannot be decided simply by maximising the likelihood function

◮ This always leads to excessively complex models and over-fitting

Independent hold-out data can be used to determine model complexity

◮ This can be both computationally expensive and wasteful of valuable data
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Bayesian linear regression (cont.)

We therefore turn to a Bayesian treatment of linear regression

◮ Avoids the over-fitting problem of maximum likelihood

◮ Leads to automatic methods of setting model complexity

We again focus on the case of a single target variable t
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Parameter distribution

The Bayesian treatment of linear regression starts by introducing
a prior probability distribution over the model parameters w 1

The likelihood function p(t|w) is the exponential of a quadratic function of w

p(t|w) =

N∏

n=1

N (tn|w
Tφ(xn), β)

The corresponding conjugate prior is thus a Gaussian distribution of the form

p(w) = N (w|m0,S0) (1)

◮ Mean m0 and covariance S0

1There also is the noise precision parameter β, we first assume it is a known constant
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Parameter distribution (cont.)
The posterior distribution is ∝ to the product of likelihood function and prior

◮ Due to the choice of a conjugate prior, the posterior is Gaussian too2

p(w|t) ∝
( N∏

n=1

N (tn|w
T
φ(xn), β

−1)
)

N (w|m0,S0)

∝ exp
(

−
β

2
(t−Φ)T (t−Φ)

)

exp
(

−
1

2
(w −m0)

T
S
−1
0 (w−m0)

)

The posterior distribution can be thus written directly in the form

p(w|t) = N (w|mN ,SN) (2)

mN = SN(S
−1
0 m0 + βΦT

t) (3)

S
−1
N = S

−1
0 − βΦT

Φ (4)

2We derived something similar when discussing Bayes’ theorem for Gaussian variables.
This distribution is calculated by completing the square in the exponential and finding the
normalisation coefficient using the result for a normalised Gaussian
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Parameter distribution (cont.)

Because the posterior distribution is Gaussian, its mode coincides with its mean

◮ The maximum posterior weight vector is given by wMAP = mN

If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean
mN of the posterior distribution reduces to the maximum likelihood value

wML = (ΦT
Φ)−1

Φ
T
t

Similarly, if N = 0, then again the posterior distribution reverts to the prior
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Parameter distribution (cont.)

We consider a simple form of the Gaussian distribution, the zero-mean isotropic

◮ Only a single precision parameter α characterises it

p(w|α) = N (w|0, α−1
I) (5)

The corresponding posterior distribution over w is then p(w|t) = N (w|mN ,SN)

mN = βSNΦ
T
t (6)

S
−1
N = αI+ βΦT

Φ (7)

FC - Fortaleza Bayesian linear regression



Bayesian linear regression

Parameter distribution
Predictive distribution
Equivalent kernel

Parameter distribution (cont.)

The log of the posterior distribution is given by the
sum of the log likelihood and the log of the prior

◮ As a function of w, it takes the form

ln p(w|α) = −
β

2

N∑

n=1

(

tn − w
Tφ(xn)

)2

−
α

2
w

T
w+ const (8)

Maximisation of this posterior distribution with respect to w is equivalent to

1

2

N∑

n=1

(

tn − w
Tφ(xn)

)2

+
λ

2
w

T
w, with λ = α/β

◮ the minimisation of the sum-of-squares error function

◮ with the addition of a quadratic regularisation term
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Parameter distribution (cont.)

To illustrate Bayesian learning in a linear basis function model, together with
the sequential update of a posterior distribution, we consider line fitting

Consider a single input variable x , a single target variable t and linear model

y(x ,w) = w0 + w1x

We generate a synthetic set of data from function f (x , a) = a0 + a1x

◮ with a0 = −0.3 and a1 = 0.5

For a selection of input points xn ∼ U(−1,+1), we first evaluate f (xn, a) and
then we add Gaussian noise ε ∼ N (0, 0.22) to get the target values tn

◮ The goal is to recover the values of a0 and a1 (thru w0 and w1)

◮ Under the assumption that the variance of the noise is known

β =
( 1

0.2

)2

= 25

◮ We fix α = 2.0 in the Gaussian prior p(w|α) = N (w|0, α−1I)

FC - Fortaleza Bayesian linear regression
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Parameter distribution (cont.)

The plain Gaussian is not the only available form of prior over the parameters

◮ The Gaussian can be generalised

p(w|α) =
(q

2
(
α

2
)1/q

1

Γ(1/q)

)M

exp
(

−
α

2

M−1∑

j=0

|wj |
q
)

(9)

◮ It is not a conjugate prior to the likelihood function, unless q = 2

Finding the maximum of the posterior distribution over the parameters
corresponds to the minimisation of a regularised error function

1

2

N∑

n=1

(

tn −w
Tφ(xn)

)2

+
λ

2

M∑

j=1

|wj |
q
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Predictive distribution

In practice, we are not usually interested in the value of w itself

◮ We want to predictions of t for new values of x

This requires that we evaluate the predictive distribution defined by

p(t|t, α, β) =

∫

p(t|w, β)p(w|t, α, β)dw (10)

where t is the vector of target values from the training set3

◮ The conditional distribution of the target is p(t|�✒
can be omitted

x ,w, β)

◮ The posterior distribution of the weights is p(w|t, α, β)

3We omit the corresponding input vectors X from the rhs of the conditioning to simplify notation
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Predictive distribution (cont.)

Calculating the predictive distribution involves the convolution of two Gaussians

p(t|t, α, β) =

∫

p(t|w, β)p(w|t, α, β)dw

◮ The conditional distribution of the target

p(t|w, β) = p(t|x,w, β) = N (t|y(x,w), β−1) with

{

y(x,w) = φ(x)Tw

β−1

◮ The posterior distribution of the weights

p(w|t, α, β) = N (w|mN ,SN) with

{

mN = SN(S
−1
0 m0 + βΦT

t)

S−1
N = S−1

0 − βΦT
Φ

The mean of the convolution is the sum of the mean of the two Gaussians, and
the covariance of the convolution is the sum of their covariances
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Predictive distribution (cont.)

Using old results (Eq. 2.115, ⋆), the predictive distribution takes the form

p(t|x, t, α, β) = N (t|mT
Nφ(x), σ

2
N(x)) (11)

where the variance σ2
N(x) if the predictive distribution is

σ2
N(x) =

1

β
+ φ(x)SNφ(x) (12)

◮ the first term 1/β represents the noise on the data

◮ the second term reflects uncertainty associated with w

The noise process and the distribution of w are independent Gaussians

◮ their variances are additive
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Predictive distribution (cont.)

As additional points are observed, the posterior distribution becomes narrower ⋆

◮ As a consequence, it can be shown that σ2
N+1(x) ≤ σ2

N(x)

In the limit N → ∞, the second term in σ2
N(x) =

1

β
+φ(x)SNφ(x) goes to zero

◮ The variance of the predictive distribution arises solely
from the additive noise governed by the parameter β
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Predictive distribution (cont.)

Illustration of the predictive distribution for Bayesian linear regression

◮ The sinusoidal data with additive Gaussian noise

Model fitted to data, linear combination of 9 Gaussian basis functions

◮ Different datasets of different sizes

◮ N = 1, N = 2, N = 4 and N = 25
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The red curve (one per N) is the mean of the Gaussian predictive distribution

◮ The red shaded region spans one standard deviation either side the mean
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The predictive uncertainty (the variance) depends on x , it is smallest in the
neighbourhood of the points and it decreases as more points are observed
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Predictive distribution (cont.)

So far, we showed only the point-wise predictive variance as a function of x

In order to gain insight into the covariance between predictions at different
values of x , we can draw samples from the posterior distribution over w

◮ We have a probabilistic model and we can generate new data
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Predictive distribution (cont.)
Plots of the functions y(x ,w), with sampled ws from the posterior distribution
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Predictive distribution (cont.)

If both w and β are treated as unknowns, we can introduce a conjugate prior
distribution p(w, β) which will be given by a Gaussian-gamma distribution

◮ The resulting predictive distribution is a Student’s t-distribution
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Equivalent kernel

The posterior mean solution mN = βSNΦ
T
t for the linear basis function model

has an interesting interpretation that will set the stage for kernel methods

Substituting mN = βSNΦ
T
t into y(x,w) =

∑M−1
j=0 wjφj (x) = wTφ(x), we get

y(x,mN) = m
T
Nφ(x) = βφ(x)TSNΦ

t
t =

N∑

n=1

βφ(x)TSNφ(xn)tn (13)

A new expression for the predictive distribution, where S−1
N = S−1

0 − βΦT
Φ

◮ The mean of the predictive distribution at a point x is a
linear combination of the training set target variables tn

y(x,mN) =
N∑

n=1

βφ(x)TSNφ(xn)
︸ ︷︷ ︸

k(x,xn)

tn

FC - Fortaleza Bayesian linear regression



Bayesian linear regression

Parameter distribution
Predictive distribution
Equivalent kernel

Equivalent kernel (cont.)

The function k(x, x‘) is known as the smoother matrix or equivalent kernel

k(x, x‘) = βφ(x)TSNφ(x‘) (14)

Regression functions that make predictions by taking linear combinations
of the target values tn in the training set are known as linear smoothers

y(x,mN) =
N∑

n=1

k(x, xn)tn (15)

The dependence on the input values xn in the training set are through SN

FC - Fortaleza Bayesian linear regression



Bayesian linear regression

Parameter distribution
Predictive distribution
Equivalent kernel

Equivalent kernel (cont.)

The kernel functions k(x , x ′) are collected in the smoother matrix
They can be plotted as a function of x ′ for different (3) values of x

Localised around x , so the mean y(x ,mN) of the predictive distribution at x

◮ is a weighted combination of the target values

◮ points close to x are given higher weight

Intuitively, local evidence is weighted more strongly that distant evidence
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Equivalent kernel (cont.)

Examples of equivalent kernels k(x , x ′) for x = 0 plotted as a function of x ′

◮ Polynomial basis functions (left) and sigmoidal basis functions (right)
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k is a localised function of x ′, though the corresponding basis function is not
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Equivalent kernel (cont.)

Further insight into the role of the equivalent kernel can be obtained by
considering the covariance between y(x) and y(x′), which is given4 by

cov
[

y(x), y(x′)
]

= cov
[

φ(x)Tw,wT
φ(x′)

]

= φ(x)TSNφ(x
′)

= β−1
k(x, x′) (16)

From the form of the equivalent kernel, we see that the predictive mean at
nearby points will be highly correlated, whereas for more distant pairs of
points the correlation will be smaller

4We used p(w|t) = N (w|mN , SN) and k(x, x‘) = βφ(x)TSNφ(x‘)
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Equivalent kernel (cont.)

The formulation of linear regression in terms of a kernel
function suggests an alternative approach to regression

Instead of introducing a set of basis functions, which implicitly determines an
equivalent kernel, we can instead define a localised kernel directly and use this
to make predictions for new input vectors x, given the observed training set

This leads to a practical framework for regression
(and classification) called Gaussian processes
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Equivalent kernel (cont.)

The effective kernel defines the weights by which the training set target
values are combined in order to make a prediction at a new value of x

It can be shown that these weights sum to one, in other words

N∑

n=1

k(x, x′) = 1, ∀x (17)

It can also be shown that the kernel function can be written

k(x, z) = ψ(x)Tψ(z) (18)

This is an inner product with respect to vector ψ(x) of a
set of nonlinear functions, with

ψ(x) = β1/2
S
1/2
N φ(x)
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